说课稿

时间:2025-06-22 11:16:45
【热门】说课稿汇总8篇

【热门】说课稿汇总8篇

作为一名辛苦耕耘的教育工作者,就有可能用到说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。怎样写说课稿才更能起到其作用呢?下面是小编精心整理的说课稿8篇,欢迎阅读与收藏。

说课稿 篇1

一、说教材

(一)说教学地位与作用

《分数的再认识》北师大版小学数学五年级上册《分数的再认识》(34~36页)的第一课时。本课是学生在三年级初步认识分数的基础上,进行深入和拓展的,为后面学习分数的性质以及公因数、公倍数等奠定了基础。因此,本节课在整个的小学数学学习中起到承上启下的过渡作用。

(二)教学目标

过去教学过于强调接受学习、死记硬背、机械训练,而《新课改》倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力等,将教学目标分为了三维。新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生我将教学目标以下三个方面:

知识与技能:结合具体的情境与直观操作,体验分数产生的实际背景,进一步理解分数,能正确用分数描述图形或简单的生活现象。

过程与方法:结合具体的情境,体会“整体”与“部分”的关系,感受分数的相对性。

情感态度价值观:能积极参与操作活动,主动地观察、操作、分析和推理,体验数学问题的探索性与挑战性。

(三)教学重难点

根据新课程标准中的教学内容和学生的认知能力,我将本节课的

教学重点:

体会一个分数对应的“整体”不同,所表示的具体数量也不相同深化对分数本质的理解。

教学难点:

结合具体情境,体会“整体”与“部分”的关系,感受分数的相对性。

二、说学情

《分数的再认识》是在三年级下学期,学生已经结合情境和直观操作,初步理解了分数的意义,能认、读、写简单的分数,会计算简单的同分母分基础上进行教学的。其次,五年级的学生求知的欲望和能力,好奇心都有所增强,对新鲜事物开始思考、追求、探索。但是形象思维占主导地位,需要动手操作,理解知识需要具体的事物作支持。

三、说教法学法

根据本节课的教学内容和学生的思维特点,以及新课程理念学生是学习的主体,教师是引导者、组织者、合作者,我准备采用以下几种教法和学法:

1.教学中,我将通过创设情境,引发学生学习数学的兴趣和积极思维的动机,引导学生主动地探索。

2.主动探索、合作交流是学生学习数学的重要方式。给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考。

四、说教学过程

(一)创设情境,激情导入

通过故事“西游记中的唐僧分饼”引入课题一天,在唐僧师徒四人去西天取经的路上又累又渴,于是孙悟空、沙和尚和猪八戒去摘果子解渴。不大一会三人腾云驾雾回来了。唐僧很高兴打开了干粮袋,里面装着2张糖饼,3张油饼。同学们,你能用分数表示出糖饼占饼总数的几分之几吗?油饼呢?唐僧说:你们辛苦了,给你们一张油饼吧。怎样用分数来表示徒弟们得到的这张油饼呢? 为什么这样表示?一张油饼分给三人吃吧。你们说怎样分才公平啊?

通过讲故事,激发学生的学习兴趣。

(二)互动探究、学习新知

首先让学生猜测如果每个同学拿出自己所带笔的1/2,是否相同。肯定会有两种答案,再让学生带着问题去验证。在验证过程中,先叫全班学生拿出所带笔的偶数支。再是让学生数出偶数支的1/2。最后全班交流,根据数据进行分析、归纳总结得出结论。

通过拿笔的活动,让学生体会整体与部分的关系,理解分数的相对性。同时,体现了学生的主题地位以及教师的主导作用。通过动手操作,让学生对分数有更深的了解。

(三)运用新知,拓展延伸

这部分内容主要是让学生通过比较两本书的1/3不同,使学生认识到:

1/3对应的整体相同,表示的具体数量也相同。

1/3对应的整体不同,表示的具体数量也不同。

使认识进一步提升的:

任何一个分数对应的整体相同,表示的具体数量也相同。

对应的整体不同,表示的具体数量也不同。

(四)巩固反馈,发展能力

在处理具体练习中,我觉得应该指出的是。

1.画一画中,无论如何画,只要是整个图形的1/4是一个小正方形既可。通过这样的学习活动,既有利于加深学生对分数整体与部分关系的理解,又有利于发展学生的空间想象能力。

2.练一练第1题重点是分割法、移动法、旋转、合并这些方法的使用。

3.练一练第2题重点体现涂法的多样性。

4.练一练第3题重点除了体现画法多样性之外,还要比较平均分之后,每一个图形的两个1/2是否相同;还要比较这三个图形的1/2是否相同。这部分其实是“总数相同,同一分数表示的具体数量也相同;总数不同,同一分数表示的具体数量也不相同”的知识点内容的教学。让学生在直观的基础上,把已经形成的抽象认识,进行了及时的练习和必要巩固和强化。

我们常说“授之以鱼,不如授之以渔”。这节课我不仅注重了知识的教学,同时也注意了学习方法的教学。让学生在经历猜测、验证、总结的过程中解决问题,体现解决问题的方法。

(五)小结

在这一环节中让学生主动回答这节课学到了什么,这些知识可以解决生活中的那些问题,学以致用。

(六)布置作业

在布置作业时,我设计了有层次的习题,分为必做题与选做题,使学有余力的学生在原有的基础上有所提高,体现了因材施教的思想,落实了“人人学有价值的数学”、“人人都能获得必要的数学”、“不同的人在数学上得到不同的发展”的基本教学理念。

五、说板书

分数的再认识

在本节课中我将采用提纲式的板书设计,因为提纲式的板书设计条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解。

说课稿 篇2

尊敬的各位评委、老师:

你们好!

今天我说课的题目是《小草和大树》!

一、说教材:

《小草和大树》是苏教版语文第十一册第三单元的课文,与本单元的其他两篇文章一样,都是写人励志的文章, 本文讲述的是《简爱》作者英国著名小说家夏洛蒂。勃朗特和她的两个妹妹在生活艰辛、写诗受到嘲笑讽刺、发表寥寥无几、出版失败的情况下 ,仍然不放弃文学,以坚强的毅力从事小说创作,并取得成功。告诉我们:面 ……此处隐藏14079个字……立体几何知识学习完毕,学生已具有了一定的空间想象能力,掌握了一定的立体几何的研究方法的基础之上,对二面角求解方法进行的一个补充。二面角的求解是立体几何部分的一个重点也是一个难点,本节内容为学生提供一个新的视角。

2.教学内容及目标

教学内容:

将异面直线两点间距离公式变形应用于求二面角,变形所得公式就是本节所学主要内容,暂且称这个公式为二面角余弦公式。

教学目标:

知识目标:异面直线两点间距离公式在求二面角中的应用;

能力目标:

(1).推广引申不但能加深对原题的理解,而且对于扩大解题效果,提高解题能力,培养发散思维,激发创新意识,都有不可忽视的积极作用。

(2).通过转化问题探究公式条件的过程,培养学生探索问题的精神,提高学生化归的意识和转化的能力。

情感目标:通过问题的转化过程,让学生认识万物都处于联系之中,我们要用联系的观点看待问题。

3.教学重点和教学难点

重点:二面角余弦公式条件的发现,结构的确定;

难点:二面角余弦公式条件的发现,结构的确定;

二、学情分析:

1.起点能力分析

立体几何知识学习完毕,学生已具有了一定的空间想象能力,掌握了一定的立体几何的研究方法,并成为本节的学习基础。

2.一般特点分析

高二学生观察力已具有一定的目的性、精细性、持久性,有意识记占主导地位、意义识记以占重要地位,同时概念理解能力、推理能力有所提高,具有一定的掌握和运用逻辑法则的能力,但由于认知水平的不同,学生掌握和运用逻辑法则的能力存在不平衡性。

三、教法分析:

本节采用启导法,以质疑启发、直观启发为主,通过一系列带有启发性、思考性的问题,创设问题情境,引导学生思考,教师适时演示,利用多媒体的直观性,激发学生的学习兴趣,化静为动,使学生始终处于主动探索问题的积极状态,从而培养学生的思维能力。

四、学法指导:

根据学法指导自主性和差异性原则,让学生在“观察——发现——推理——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识,发展思维能力。

五、教学程序

1.教学思路

设疑导入→构建条件→形成公式→公式应用→教学反思。

2.教学环节安排

(一).情境设置:

习题1:教科书80页题10

设计意图:由此题与学生共同回顾二面角的定义及其求解方法,并且根据题设条件,由学生发现该二面角的求解由异面直线AC、DB的位置关系来确定,提出为什么异面直线可以确定二面角,异面直线怎样确定二面角呢?引出问题二,从而进入第二环节——探索研究。

(二)、探索研究:

问题二:

问1:什么是异面直线的公垂线?两异面直线有多少条公垂线?

问2:设异面直线a、b公垂线为l,则a、b、l三条直线可以确定多少个平面?

问3:这两相交平面可以构成两对二面角,这两对二面角大小有什么关系?(设计意图:到此完成由异面直线构造二面角)

问4:从四个二面角任选一个二面角,该二面角的大小与异面直线位置有什么关系?

通过问题的层层深入,让学生自己观察、思考得出异面直线的位置可以确定二面角的大小的结论。再通过教具的演示让学生发现线段AM、BN、AB、MN任意一个的改变都会影响异面直线的位置,说明这四条线段可以共同确定二面角,从而发现公式的结构,突破难点;

问5:令a∩l=A,b∩l=B,M∈a,N∈b且MA=m,NB=n,AB=d,MN=l,求二面角α―l―β。

通过问题5将异面直线的位置量化,由学生自己推导,得出二面角的余弦公式

设计意图:通过问题5设出四条线段的长,求二面角的大小,从做辅助线、确定二面角平面角,到在三角形中计算求值,最后整理解题过程,由学生自主解决,教师适时引导,多问学生为什么,纠正学生语言表达上的错误,提示解题不符逻辑关系的地方,让学生在相互补充,相互找不足的这一自我评价、自我调整过程中,完善推理过程,得出二面角的余弦公式。通过这一数学交流活动,暴露学生的思维过程,提高学生语言表达能力,培养学生合情推理能力,注重学生作为个体发展能力的同时,也注重培养学生协同合作共同探索、的精神。并且让学生体会数学学习不仅重在学习一个结论,而是注重学习的过程,让学生在自己发现结论、自己推得公式中体验成功。

问题三:用问题二的方法求解习题一

设计意图:巩固公式的应用,明确如何应用公式;通过对比公式与习题一的条件,让学生认识到本节所学求二面角的方法是对教科书习题一般化所得的结论,体会数学从“特殊”到“一般”,再从“一般”到“特殊”的研究过程。

问题四:将公式条件中二面角两半平面的线段放到了以棱上线段为公共边的三角形中,作为了两三角形的高。

设计意图:通过这一过程,进一步深化所推公式中量的理解,其作用是半平面用三角形表示,更有利于在柱体或锥体中解决二面角的求解问题;

(三)、巩固训练

习题2

1.(改编自教科书80页题11)把长、宽分别为4、3的长方形ABCD沿对角线AC折叠,使BD长为7/5,求二面角B―AC―D。

2.(教科书80页题11)把长、宽分别为4、3的长方形ABCD沿对角线AC折叠成直二面角,求顶点B与D之间的距离。

设计意图:

题1是对问题四结论的简单应用。此题题设是将平面图形折成立体图形,求形成的二面角的大小,巩固平面图形折叠过程中量的变化情况。

题2让学生认识:二面角余弦公式建立了四个线段、一个角五个量间的关系,知道其中任意四个,都可以求第五个量,加深对公式的认识,熟悉公式的变形应用。

习题3:(选自20xx年湖南高考题)已知四边形ABCD是上、下底边分别为2和6,高为的等腰梯形,将它沿对称轴OO′折成直二面角,求二面角O―AC―O′的大小。

设计意图:让学生创设公式应用条件,自主解决问题,同时再次巩固立体空间中量的求解用平面解决的思想方法。

(四).总结提炼:

1.说明本节所学求二面角方法的可行性;

2.说明本节所学求二面角方法的合理性;

3.本节所学求二面角的方法不是教科书中的定理、公式,因此不能作为已知结论在解答题中应用。但学习重视结果,更注重学习的过程,这节课学习的意义,不是公式本身,而是用已知的知识探究出新的解决问题的方法的过程。

(五):作业

习题4、为必做题,习题5为选做题

设计意图:布置作业有弹性,避免一刀切,将上述思维发散的过程延伸到课后,使学生活跃的思维得以发展,进而形成思维习惯。

总之,在整个课堂教学中,努力挖掘蕴含于知识生成过程中的数学思想方法,有机结合,有意渗透,以培养学生的思维能力。

《【热门】说课稿汇总8篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式